Showing posts with label 456 MHz. Show all posts
Showing posts with label 456 MHz. Show all posts

Monday, July 27, 2015

Making Waves: Oscilloscopes, Lissajous and a Smattering of Cymatics




Making Waves: Oscilloscopes, Lissajous and a Smattering of Cymatics


Lissajous Figures are curves that are complex enough to make a pattern. These patterns are great tests for oscilloscopes because you can learn information from them by looking at how they move and their shape. They can tell you the frequency, phase, and even angle ratio which you can then look up in a trigonometry sine value for the phase angle of two waves: which lets you figure out the power factor of an electrical component.

Sine waves: sin and cosine. Get it?


Above is a circle I drew with a triangle. The bottom of the triangle is cosine. This is a 45° triangle. Trigonometry and Lissajous Figures are ratios. The ratio of cosine and sine is 70.7% and the angle is 45°. So, sin45 = 0.707. The same priciple applies to waves, but showing it on a circle is easier.

Fancy-smanshy, but we're just looking neat waves here. Lissajous waves are beautiful and quite reminiscent of Art Nouveau "whiplash" style curves and lines used in everything from painting and sculpture to wild furniture and architecture.



So who discovered Lissajous Figures? A man named Nathaniel Bowditch of course! Huh? Yeah, Bowditch experimented with them for a while, then like 50 years later a guy named Jules Lissajous attached a tuning fork to a lightbulb to create these patterns. Previously, people would use a pointed pendulum swinging through fine sand to create what much later became known as Lissajous Figures. I used an analog synthesizer and an old oscilloscope.



I also put a second line out from the synthesizer to a speaker so I could hear the waves while viewing them. A brand new 20Mhz probe and BNC female to UHF male adapter round out this setup.




Lissajous Figures are easy to use. You just count the loops running across the top of the pattern and down the side. This gives you your ratio, a 3 to 1 means 180 cycle voltage, 3 to 5 means a 60 cycle signal, etc. You set the signal input and then calibrate the oscilloscope by at adjusting until you get a familiar pattern. In the above video the settings I talk about are on the synthesizer, not the oscilloscope: I was going for beauty and variation, not calibration.


There are tons of ever more complex Lissajous Figures / Bowditch Curves. Above are the most common ones you'll probably encounter.



Another type of waves are Chladni Figures after Ernst Chladni in 1787 (later renamed Cymatics in 1967 by Hans Jenny). So, who first investigated them in recent times? Our poor, old friend Robert Hooke! You remember him right? He was the guy who discovered "Newton" Rings and "Newtonian" telescopes. I guess we should count ourselves lucky these aren't called Newton Figures.

Cymatics is sound waves directed through water.  Chladni used sand on the bodies of acoustic guitars, but the principle is the similar; although the sand forms geometric patterns that are more hard edged. Here are a few variations of Cymatics waves:




At 456 MHz the water spattered out of the plate:


Shocking and messy!


Here are some still photos of various Cymatic waves:













Chladni Figures are usually made in sand on flat plates. They're basically Cymatic waves in sand but there is a huge difference in how they look because the sand bouncing around, while the sound waves push the water into itself, bumping the waves along: which is why sound travels 4 times faster in water than air! Of course sound moves fastest through our good old friend beryllium from my neutron gun experiment. 



Chladni Figures, related to Cymatics (water and sound waves) showing sounds creating patterns in sand. For more geometric results a square plate and direct vibration coupling works much better. I was piping sound to a metal file cabinet, which then went to the small plate. At first I was bummed they weren't geometric, but after extensive image searching I found exact pattern duplicates from someone using a wooden desk with no plate.

This was just a spur of the moment test after looking at Lissajous Figures on my oscilloscope at 2 AM waiting for the cloud to clear so I can drag my telescope outside.


Here's another attempt:



Again, I found this same pattern duplicated by someone else, so I wasn't totally annoyed at the less-than-awesome pattern. I think once I get a perfectly flat metal plate instead of a slightly domed dish (which was levitating off the surface due to the sound pressure) I think I'll be able to get the hard edged geometric lines. As Paul Camp said, "There is a balance between discovering for oneself and being told."

I'll also be able to better acoustically couple the metal plate to the sound source. I'll update here once it's done, but I'm working on some other projects first.




Just make the noise stop-I can't cover my ears! Meow.